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ABSTRACT

In this paper we consider systems of weakly coupled nonlinear second

order elliptic and parabolic equations with nonlinear, pocsibly coupled,
fW@ boundary conditions. The aim is to find invariant sets of the form

S = {(ul,uz,...,um)l¢i(x) < ui(x) < wi(x) a.e.}

for certain nonlinear reaction-diffusion equations:

U, + Eu
t

P(u) 1in Q ,

BU

G(U) on 2930 ,
where L = (Ll'LZ""'Lm) (Li a linear second order elliptic orerator)

and B = (Bl'B2'°"'Bm) (Bi a linear boundary operator of a general

type) and U = (ul,uz,...,um). The main result essentially says that

s = {u]o < U < ¥} is an invariant set if

Lé < F(¢) and LY > F(¥Y) in Q
and

Bé < G(®) and BY > G(¥) on A% .

The work also includes some existence results for the parabolic problem

and the associated nonlinear elliptic problem.

AMS (MOS) Subject Classifications - 35K55, 35K60, 35J55, 3500

o

Key Words - Reaction-diffusion, Nonlinear elliptic, Nonlinear boundary
conditions, Invariant sets
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\ SIGNIFICANCE AND EXPLANATION

\

Systems of coupled second order parabolic equations, or reaction-

diffusion equations, arise in the mathematical models of various physical, :;
s chemical and biological processes. They describe the evolution in time of
two or more substances which interact and diffuse. More specifically,
reaction-diffusion equétions arise in chemical reactor theory (where the
components are concentrations of chemicals), in ecology (densities of
species), in the theory of combusion (densities of fuel and thermal
energy), and in the theory of nerve impulse transmission (densities of

chemicals and electric charges). At any instant of time the densities,

which are functions of the space variables, describe the state of the

e

system. An invariant set S 1is a collection of states with the property
that once the system is in a state which is a member of S then, however
else the state will evolve, it will at all later times still be a member

; of S. Symbolically, if U(t) is the state of time t then U(to) €5

implies U(t) € S for all t > to. In this paper criteria are found
Lople s Py .

+

which can be used to find invariant sets which are described in terms of
upper and lower bounds for the various components of the state. As a
by~product existence and comparison results for the associated elliptic

problems are obtained. 1In all results both the equations and the boundary

conditions are allowed to be nonlinear.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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1. Introduction.

]
Consider the reaction-diffusion equations
3
(DE) 3t T Ly < f et 0 1<k<m,

where LI'LZ""'Lm are second order elliptic partial differential operators on a
bounded open set Q C R" together with the conditions

(BC) Bkuk = gk(x,U) l1<k<m,

imposed on U(t) = (ul(',t),uz(-,t),...,um(-,t)) at the boundary. For t € [0,T) we
may think of U(t) as belonging to some Banach space X of real valued functions from
Q into Rm. Let KC [0,T) x X be a set whose sections K(t) are closed convex sets
in X. K 1is then called an invariant set for the problem (DE)-(BC) if U(to) € K(to)
implies that the solution U(t) € K(t) for all ¢t € (to,T). Reaction-diffusion
equations have lately received a great deal of attention. Their interest lies par-
tially in the fact that they occur in the mathematical models for a wide range of
natural processes (see e.g. [4], [5], [6], [24] and the references given in those
papers). In particular there has been interest in the existence of invariant sets.
Usually some restrictions are put on the form of K. For example; Weinberger [23]
considered the case where K(t) is independent of t and consists of functions which

take on their values in some closed convex subset C C Rm. Unless the elliptic oper-

ators Li are the same for all i more restrictions have to be placed on C ([1],

{4]) such as requiring that C = [al,Bll X [a2,82) Xy wu X [am,sm]. The present

author [13] obtained reéults for invariant sets of the form

K(t) = {(ul,u ""'um)|¢i(x't) < ui(x,t) i_wi(x,t) ¥ x € Q}. In this paper similar

2

results are obtained for the case where nonlinear boundary conditions are allowed.

In order to handle the nonlinear boundary conditions we use the nonlinear semi-

group theory of Crandall, Liggett and Pazy which seems to be particularly well suited.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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This approach reduces the problem to one of studying invariant sets for associated

elliptic problems. The solutions of the elliptic problem which we consider will be
distributional solutions in (HI(Q))m. The solution of the reaction-diffusion equations
which we will look at will also be of a weak type. This then means that the results
on invariant sets which we obtain will also be valid for solutions of stronger type
such as classical solutions or solutions U €C1((O,T),(L2(Q))m) N CO(IO,T),D) where
pc @)™ is the domain of (3% SRR A

Although the main theorems (9, 10, 11, 16) can be read with only the aid of a few
well marked definitions (the hypotheses being explicitly stated), we still feel it
might be helpful to the reader if we state a somewhat simplified version of the invar-
iant set theorem for the parabolic problem and give one simple application.

Let Lk(k =1,2,...,m) be uniformly strongly elliptic with coefficients in Cl(ﬁ).
Let the functions fi and 9, be of class Cl(ﬁ X Rl X Rm) and assume the boundary
conditions are of the form

Bkuk = Bk-Vuk + T = gk(x,ul,...,um) on 2939 ,

where B is a nowhere vanishing C1 vector field on 232 (which is assumed to be of

k
class C2) and O :-Yk € C(2) or the boundary condition may be of the Dirichlet type: ‘

Bkuk = uk(x) = gk(x,ul,...,um) = ek(x) on 230 .

Let ¢i and wi (1 <i<m) be Cl(ﬁ) N Cz(ﬂ) functions which satisfy, for all

A

(=}
|A
<

a e O with e,
1 .

Ly. < fi(x,t,u

rU oo, U, in 8 ,;
B A

1Y% PR POLRCREL %,

]

i Liwi > fi(x,t,ul,uz,...,ui_l,wi,ui+l,...,um) in @, i
Biwi = gi(x,t,ul,uz,...,ui_l,wi,ui+1,...,um) on 239 , {

Biwi 7 gi(x,t,ul,uz,...,ui_l,wi,ui+1,...,um) on 9Q . i

{

Then {(ul,u ,...,um)lwi(x) Sux) <y x) yxe R 1<i< m} is an invariant set

2
for the problem (DE)- (BC).

- Vi




Application. Let

combustion (cf. [

case:

where T and n

E,R,Q,k1 and k2

interest is x €

lost at the left

where g(0) =0

Suppose that we a

n, = max n(x,0)

7

P,
-

is invariant if w

where T = QaL/k.

N A

the inequalities

satisfied.

Also we note that

out if we for example allow k and k to depend on x). We assume the region of

us consider a system of equations which arise in the theory of

4], [11)). For simplicity we restrict ourselves to the one dimensional

s -E/RT
t 17xx - "P€ .
P =k e_E/RT

t 2Txx = !
denote the temperature and concentration of the fuel and where
are constants (the calculations below can however still be carried
2 | 2

[0,L] and let us assume fuel is fed in at the right end and heat is

end: we impose the boundary conditions

nx(O) 0 nx(L) = g(n)

y

T_(0) 8T
x

Tx(L) =0

and g(z) 250 whenever z 2 uo, where ao > 0 is some constant.

re given some initial conditions and that TO = max T(x,0),

and that a max{ao,no,kZBTz/QL). We then claim that the set

I

{n,m[0 <n<ny, 0<T <y}

0
e choose

/Y

o) = 81T @ 1k - /2L

Let us verify that Yy satisfies the right inequalities (sce (A)),

for the other functions used in the definition of | being trivially

k¥ (x) = kyT/L = Qa > Ong 2 one” =R

3 (0)/3v = =' (0) =~-1 =-By(0) "

WY (L)/3v = Y'(L) = 1
/Y >

T 20

T and therefore we know that

V) > p(0) = (/8)" 1

(n;8),T(>, L)) € I forall & >0 .
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2. The Linear Elliptic Problem.

‘Let Lk' 1 <k <m, be linear second order uniformly elliptic operators with
real coefficients acting on real valued functions of x = (xl,xz,...,xn) in a bounded
n
open set Q2 C R .

= ij i i
Lku = Di[ak (x)Dju + dk(x)u] + bk(x)Diu + ck(x)u

where summation is, and subsequently will be, carried out over any index which occurs
both as a subscript and as a superscript within the same term. Next let Bk’ 1 <k < m,
be first order boundary operators, of transversal order 1, acting on real valued
functions defined on some subset Ak of the boundary ©9{i. In this section we shall
look at the weakly coupled linear system

(L, + My () - ha(x)uj(x) = e e (1)

with boundary conditions

- &
Bkuk(x) ek(x)uj(x) gk(x) (x € Ak) iy (2)

uk(x)

ek(x) (x € Fk = BQ\Ak) ' (3)

for all 1 < k < m. We will look at this problem from a variational point of view and

hence it will be necessary for us to write the operator B in the form

k
B u=V [aij(x)D u + di ] +0 (x)u + ri(x)D u
k 1% j k" T i
where v = (v ,v_,...,v ) is the unit outward normal on 8 and t, = (t1 tz,...,tn)
S e k k' "k k

is a tangential vector field on 90 : vi(x)t;(x) =10 on 9gf for all 1 <k S 'm.

We will use ( , )Y to denote the usual L2(Y) inner product. When we take a

i : 2 . :
direct sum of m copies of L (Y) we shall still use the came symbol for the inner

product on th;s direct sum, i.e. if F ; (fl,f2,...,fm) and G = (ql,gz,...qm) are
members of fii LZ(Y) then (F,G)Y = X (fi'gi)Y' The norm is denoted by H Hﬂ v

i= fue 0,
If Y = we shall delete the subscri;t1 Q. Hence || ”O denotes the LZ(J) norm,
() the LZ(Q) inner product (or the (Lz(ﬂ))m norm and inner product respectively).
The norm on the Sobolev space W ''(0) (derivatives of order <m are in IP(2)) is
denoted by H llm,p' If p=2 we also use H llm to denote the norm on Hm(u) = Wm’:




Corresponding script letters will be used to denote m-fold direct sums of function

m ¥ m
spaces e.g. ) = () ata@), @ = &) cl@ ete.
i=1 i=1
A formal integration by parts of the expression

«©

é k£1 (L, + Ny v dx,

with uk's which satisfy (1)-(3) and vk's which vanish on Pk, leads to the equation

"

m iy 1y
ij 3
A, (U,V) kzl {(a, Djuk,Divk) + (@ DV

i )
+ (kaiuk’vk) + ((ck + A)uk,vk) (hkuj,vk)

! s
+ (ckuk,vk)Ak (ekuj'vk)Ak + (tkDiuk,vk)Ak}

m
= e, va) (gl
oy KK L

where U = (ul,uz,...,um) and V = (vl,vz,...,vm). If the coefficients of Lk and

. Bk are sufficiently well behaved then the bilinear form AA is certainly well defined
on Cl(ﬁ) X Cl(ﬁ). We will impose conditions which will allow AA to be extended to
v a continuous U-coercive form on U x U for some subspace U of HI(Q).

(I): @ is a bounded open set in R" whose boundary is of class C2.

This condition can be weakened to requiring that 09Q be Lipschitz continuous in a
sense defined for example by Nefas [20]. However it seems this would require us to
really handle the tangential derivatives in Bk rather than, as we shall be able to,
remove them from consideration by treating another but equivalent problem. The nature
of the work involved is then such that one might as well consider very general boundary

1/2 30) into HY2(30) (see e.g. [2]).

operators, namely those which map H
Let D(Q) be the C“(Q) functions of compact support, and D(Q)' the Schwartz
distributions. The non-negatively valued functions in D(Q), denoted by D+(Q),

form a cone in D(R). Let D _(Q)' be the dual cone: fe€ D (2)' iff £(§) >0 for

all ¢ € D+(9). Consequently we have a partial order > on D(Q)': f > g iff

R e e R s S P e Bt
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) f-ge€ D+(9)'. This partial order extends the usual partial order on Ll(Q) functions:

f >g iff f(x) > g(x) a.e. Furthermore we can extend such partial orders to vectors ' -

and matrices by saying F > G if the relationship is satisfied component-wise.

to denote the 0th order trace map, i.e. the extension of the map
1

W
e use YO

t u > ulaQ from Cl(ﬁ) into Cl(aﬂ) to a continuous map from W ') onto
| w'TPPag) ¢ tP3) for p > 1 (111, [16], [17]) or [18]).

We shall, on occasion, refer to the various Sobolev-Kondrasov imbedding results.

| We mention the following [15, p. 43]:

WP ci@ if >

0 |-

r
- ;, PX <'np s = k<

o=

w'P@) cc®@ if pr>n,ac<1, a 5";'“ :

The second imbedding is a compact linear map, as will be the first imbedding provided

the inequality is strict.
We also need
1

: ij © q i q q/2 i q/2
an: a’eL (@, d €L, boeL @, c €LV, D eLT@, .

-
o e e o

o<nle V%@, ocele Poam, 0o e Pom, e w @,

: 3 i
with suppyot; C Ak' where p>n-1, p>1, 9>n and g > 2. Also vidk >0 on
3Q*), and there exists a constant 1y, such that S, & Did; By

The above hypotheses are directly related to the Sobolev imbedding theorems. We also
require the operators Lk to be uniformly elliptic:

(III): There exists a positive constant v_ such that for every 1 < k <m and all

0

£ e Rn we have

ij T .2
a, (x)EiEj =V 'Z &y T 3

This condition can be weakened in order to treat cert~in degenerate-elliptic problems

by methods described in [19]. .,e

) : 5 ‘
#) de. J (d;Dio # ¢Did)‘:)dx > 0 whenever 0 < ¢ € H (Q). |
Q

=
26
.

T ek
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(IV): Ak is an open subset of 932 such that the (n - 1)-dimensional Lebesgue measure
of its boundary in 3Q is zero.

Let wz'p(n) (resp. HE(Q)) be the subspace of Wk'p(ﬂ) (resp. Hk(Q)) ohtained by

taking the closure of D(Q). The dual space of Wg'p(ﬂ) may be represented by

w—k'p*(ﬂ), the collection of all Schwartz distributions of the form Diwi + y with

wi and ¢ in LP*(Q) where 1/p* + 1/p = 1.

Before we proceed it should be noted that the usual Green's formula

(v,Dkw) = -(Dkv,w) + (vkyov,yow)aQ

which holds for v,w € Hl(Q), should be interpreted in the appropriate sense when

n = 1. Although the results in this paper apply as well to the one-~dimensional case

we shall not take the trouble here to point out the various obvious notational modifi-
cations which need to be made.
For S C 3G 1let H;(G) be the closure in Hl(G) of

{ue Hl(G)|u(x) = 0 a.e. on an open neighborhood of 3G\S}

1
L}

(e.g. [10]) that this space is also equal to {ue€ Hl(Q)IYOu = 0}. We shall use

With this notation H_ (G) = Hé(G). If 3G is sufficiently regular it can be shown

1 o i
HA(Q) to denote @ Hy @)
k=1 'k
Our first objective will be to simplify our problem somewhat. Consider the

fomsey

H
bilinear functional AA' Using the Sobolev inequalities one easily shows that the ?

first 5 terms are continuous on Hl(Q) x Hl(Q) {see e.g. [15]). Using the fact that
(2n-2) /n-2

if ue H'@ then vpue /%00 Cy (32) (see e.g. [16] for the imbedding
theorem for fractional Sowolev spaces) we also easily verify that the next two terms

in the expression for AA(U,V) are continuous bilinear functionals on Hl(ﬂ) x Hl(ﬂ)-

The last term is also continuous. However we can use the following result of Fiorenza

[9] to remove it from consideration.

¢ n .
Theorem 1. Suppose Q is a bounded open set in R, n > 3, whose boundary is of

class CZ, and suppose t; € Wl’q(Q). Then there exist functions




u;J(= -uil) € LQ(Q) and functions Y; € Lq(ﬂ) such that for all wu,v € Hl(Q) we

have
i i) j
(tkDi“'v)BQ = (ak Dju,Div) + (Yiju,v)

1l,n

Although in the proof Fiorenza assumes t1 € LQ(Q) nw Q) (D wl'q(Q)) and hence

k

gets the Yi's in Ln(ﬂ), an examination of the proof easily reveals that assuming our

slightly more restrictive condition t; € wl'q(Q) does yield Yi € Lq(Q). The proof

for the case n = 2 is especially easy: Let s denote the distance along 3%,
measured in such a way that when moving along the boundary in the direction of

>
increasing s, § 1lies to the left of 09Q2. Let t be the unit tangent vector in

the direction of increasing s, and let Bk = Ek'g (Zk = (ti,ti)). The last term

in the expression for AX(U,V) takes the form

m m
] J Bv (Vo-frds= | [f V(B v,) x Vu axay
ke1ag KK K i KB UK

m
kzl {{ (B, (v, x Vu) + v, (V8 x Vu)laxdy

m o !
1] i
kzl {{ (O (Diuk)(Djvk) + kakDiuk]dxdy

1

=
Of course this proof requires that we extend t toa W ’q(Q) vector field. (Note

that the product of two members of wl’q(ﬂ) is again in wl'q(Q)). We know however

that t; € Cl(aﬂ) € wl'l/q'q(an) and hence the extension is possible by the trace

theorem [16].

Using this theorem we can remove the last term in the expression (4) for AA(U,V)

ij

and replace ak by a;J + u:J and bl by bl + Yl. These new coefficients satisfy

k k k

exactly the same hypotheses as the unaltered ones. Even the ellipticity constant Yo

is preserved. Without loss of generality we shall from now on assume t; = 0 for all

k and i.
:
Lemma 2. For any € > 0O there exists a constant C(e) such that for all u € H (Q)

(i) | uas < ¢ [ |pul%ax + cte) [ ulax .
a0 Q Q

==

2 et
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Moreover there exist constants € > 0 and Mo > 0, independent of A, such that
ft 2 2
> L,
(ii) A, (U,0) eollulll + G~ i) ||u||0 :

i.e. AA is Hz(ﬂ)—coercive

Proof: We shall use the following result due to Lions [20]: If xa CRRCRE xc are

b
Banach spaces with norms || ”a'll “b'|| ”c respectively and if the first inclusion is
compact linear and the second continuous linear, then for each € > 0 there exists a

constant C(e) > O such that

lelly < ellxll, + ceerllell,  wxe x, -
We now close Hl(Q) Cc LZ(Q) with respect to the norm

I|u”2 = f uzds + f u2dx
0 Q

and call this space H. Now we merely apply Lions' result to Hl(Q) CHC LZ(Q).
Of course this proof can also be accomplished by the standard partition of unity
argument. For the proof of (ii) we note that the first term of A, (U,U) satisfies

G m m
1] | 2
& é a, (Djuk)(Diuk)dx z~v0 Z z 'Diukllo'

k=1 i=1
Hence it suffices to show that each of the other terms is dominated, in absolute value,
by a quantity of the form

2 2
e”UHl + Cl(g) HU”O

where the € > 0 can be chosen arbitrarily small. This is easily seen to be the case.

For example

@ u0 | < llevw I3+ 1| Ea 1l

2 2 ~2 i 2 2
< llwll2 + 2lakN2 Mll2 50 qen

By the Sovolev-Kondrasov embedding theorem the embedding Hl(Q) < qu/(q_z)(Q) is

compact continuous. Hence we can again use Lions' result to deduce that the above

quantity is

< Elwli + e 2Nl et llmali? + E@llw 1) < elivullg + e llullg

2o,

=G




..

.
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provided € is chosen sufficiently small. As another example let us take one of the

integrals over Ak:

3 3
l{ e, uu,ds| :HekllolplAkllujIIO,,,-mllukllo,,,BQ
k

where p >n-1, r =2p/(p - 1). This in turn is

2

< cst. ”U”o,r,an

We again apply Lions' result to Hl(Q) (S Lz(ﬂ) where X is the closure of Hl(Q)
with respect to the norm
m
ol = 3 gl ., aq + ol

Since Hl(Q), c LZ(Q) is a compact embedding and since Hl(Q) > Hl/z(BQ) c 1F (3

is a composition of a continuous linear map Yo and a compact embedding (since

1 1/2
% > 5 - ;éf we can apply the Sobolev-Kondrasov results) we may conclude that !
j < + -
IJ cpuguas] < estllol] < elloll, + ce@ oll,
A
k
At this point it will be convenient to introduce some abbreviated notation. If
1 i i i 3 i i
U = (ul,uz,...,um) € H (2) then HU = (hlui'hzui""'hmui)' EU = (elui'ezui""'emui)'

We also set F = (fllfz,...,fm), G = (91,92,...,gm), 0 = (61.62,-..,6m),

= .. = .o X i i
A Al X Az X x Am, T Fl X F2 x rm and L and B will respectively

denote the operators (Ll'L2""'Lm) and (81,82,...,Bm). With this notation (1)-(3)

can be written as

(L+ XA =-HU-=F in @, (4)
(B - E)U =G on A, (5)
U=0 on I . (6)

Befinition. For F e AL (Q)' (the dual space of HL(R)) and Ge A /2(30) (the dual

/

space of Hl 2(9) = Yoﬁl(n)) and O € Hl(Q) N Lm(ﬂ) we will define U to be a

generalized solution of (1)-(3) if U - ©@e¢ Hi(ﬂ) and AA(U,V) = (F,V) + (G,V)A for

all Ve Hi(Q) (or equivalently for all Ve CZ(Q) = vy v € c°°(m|vi =0

@

on an open neighborhood of Fi, 1 < i <m}). Oof course every classical solution is a

-10-
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generalized solution and, for sufficiently large A, there exists at most one
generalized solution.

We shall need the following theorem of Stampacchia
Theorem 3. Let A be a continuous bilinear functional on a real Hilbert space Y
with inner product ¢( , ) and let UC Y be a closed convex subset. Suppose A is
strongly coercive on U - U, 1i.e. there is a positive constant c¢ such that
Aly,y) > cly,y) for all ye€ U~ U. Let

U
z

[}

{ye Y|z +ey e U for some e > 0}
Then for each f € Y there exists a unique element 2z € U such that

A(z,y) > (f,y) for all ye€ Uz =
The proof of this theorem can be found in [22] for the case where A is strongly
coercive on all of Y. However, an examination of the proof shows that strong
coerciveness on U - U suffices. The minor modifications needed in the proof were
pointed out in [12].

We use K to denote the cone of non-negatively valued functions in Hl(Q).
Consistent with our earlier notation, K will denote the cartesian product of m
copies of K.

We remark here that the following two lemmas, 4 and 5, are true even if we impose
no regularity conditions on 9 or A. These two lemmas correspond to similar results
obtained by Stampacchia [22]. First we need another definition.

T

Definition. Let [/ be a subspace of Hl(Q), then U € HI(Q) is called a U-subsolution

for (1)=(3) if AA(U,V) <0 for all Ve UNK.

Lemma 4. If U1 and U are Hi(n)—subsolutions, - (R as in Lemma 2, and

2 0" "o
W = max(Ul,Uz), the component-wise maximum, then W is also a Hi(ﬂ)—subsolution.
Before we prove this lemma we need to make several observations whose proofs can
be found in (15, pp. 50-54]. If k is a constant then the function
(u v k) (x) = max(u(x),k) is a member of Hl(ﬂ) whenever u € Hl(ﬂ). Also, if u > u

in Hl(&) then un vk=+=u9Vvk ib Hl(Q). Moreover the distributional derivatives of

u vV k satisfy

1=~




0 if u(x) <k

Di(u v k) (x)
Diu(x) if u(x) > k .

But since uvv=u+ (v-u) VOE€ Hl(Q) if u,ve Hl(Q), we see that

Diu(x) if u(x) > vix)

D, (u v v) (x)
= Div(x) if ulx) < vix) .

Of course everything is modulo sets of measure zero; in particular Diu = Div a.e. on
the set where u = v. Also analogous results hold if we replace u VvV v by

u A v =min(u,v).

Proof: Let U= {ue Hl(n)lu <W and U- We Hi(ﬂ) where < should be interpreted

as component-wise a.e. Clearly U - UC Hz(ﬂ). For each Y € U we define
UW ={Ve HX(Q)]W +eve U for some e > 0} .

We have the inclusions UW C Hi(ﬂ) and -KN Hi(Q) C UW' Now let Y be the unique
element in U such that AA(W,Z) >0 for all ze€ UW' This means that Y must be
an Hi(ﬂ)-subsolution. Let ¢ = max(Ul,W). We note that there exists an element

Ve Hz(ﬂ) such that ¥ = V + W. There exists a sequence {Vn} C HI(Q) such that for

each i and n there exists an open neighborhood Nn i of Fi such that the ith
’

component of V anishe N .
mpo o , Vanishes on -

and such that Vn 4+ YV in Hl(Q). From the above
5 1
remarks we see that max(vn + W,Ul) - (Vn + W) converges to ¢ - ¥ in H (), but

also the ith component of max(vn + w,ul) - (vn + W) vanishes on Nn i Therefore
’

o -Ve H:(Q) and we have ® - ¥ e U,, so that
A (4,8 - ¥) >0 (a)
We also claim that

AA(O,O -Y) i-AA(U1'¢ - Y¥) (5)

To see this we write

m .
% A o Vel
A(®-U,0 -1 DR (hy (o, = u

Vo = B & LEOp. = . Jal, = b
k=1 k k k Jj

1j G JRE k 9Q

which is indeed < 0 since wj o2 ulj and Wk > wk while hi and eJ are > O.

Combining (4) and (5) we obtain
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AA(¢ = N0 =¥y e AA(01’° =¥y <0
since Ul is an Hi(ﬂ)—subsolution and ¢ = Yie K0 Hi(ﬂ). Because )\ > uo we see

that & = ¥ and hence Ul < ¥ Similarly it follows that 02

wW=Y, an Hz(ﬂ)—subsolution. .

< ¥ and consequently

Lemma 5. If U is a generalized solution of (1)-(3) with A > uo, F>0, G2>0
and © > 0, then U > 0.

Proof: Both -U and 0 are Hz(ﬁ)—subsolutions and hence so is W = max(0,-U).

But since W is also in K N Hi(Q) we see that Ax(w,w) < 0 and therefore W = 0. ®
Remark. If f € Ll(Q) and f > 0 a.e. then fe€ D+(Q) but the converse is not
generally true. However since © € Lw(Q) one can easily show that Gk € D+(Q)

implies Bk > 0 a.e. by merely taking a sequence in D+(Q) which converges in Ll(Q)

to the characteristic function yx of the set (x|0k(x) < 0}. Therefore (8,,x) = 0.
Theorem 6. Problem (1)-(3) has a unique generalized solution for each F € Hl(Q)',
ce HY%() ana ©¢ H'(2) N L7(Q) providea A > Ho-
Proof: This is a simple application of Theorem 3. Let U be the affine space

0 + HX(Q) and Y the Hilbert space Hl(Q). By the Riesz representation theorem
there exists a T € Hl(Q) such that (T,U) = (F,U0) + (G.U)aQ for all U e Hl(ﬂ)
where ¢ , ) is the usual inner product on Hl(Q) extended in the obvious manner

to the direct sum of such spaces. Hence, since U - U = Hz(Q), therc exists a unique

U € U such that

AUV > (T,V)  ¥Ve H@)

But since -V € Hi(ﬂ) we have in fact equality.

Using the Sobolev embedding theorem one finds that LS/Z(Q) e Hl(u)' and
Lp(aﬂ) (== (YOHI(Q))'. This justifies the following definition. L
Definitions. Let H denote the space # @) NL”(Q) with norm H|UH|=[!UH1 2 +||U“o =

and let gx be the map from Lq/2(Q) x IPa) x H into Hl(ﬁ) which associates with
each triple (F,G,0) the unique solution U to (1)-(3) () > uy) -
Theorem 7. Suppose A > po and U is a generalized solution to (1)=-(3) with

o

retY2(q), ce IP(32) and O # (@) NL7(Q) then Ue L7(Q).

i A T Sb ey




Proof: 1In order to apply known results for single component equations we first consider
the case where H=0 and E = 0. It will suffice to show that the solution is bounded

from above. Let u > ”9”0 w and M= (uw,u,...,u), then U' =U- M satisfies
’

(L+ AU =F Y2

BU* <G € F (aq)

U' =0-M<0

where F,6 = (f1

3 - j
ceey with .= + =
1 v fl ) wit! fl £ uD.d; uc, uA  and

1'512 i

G1 = (gli,glz,...,glm) with gli = gi = uoi. Applying lemma 5 we see that U' <V

where

(L + A)V Fz in Q ,

BV G2 on o ,

(a)

where F2 (resp. Gz) consists of the absolute values of the components of F (resp.

1

Gl). Let v1 be the generalized solution of

(L+ NV =F, € Y2 q)
(B)
BVI/BN 0 on 30

where 09/93N = vi(a;JDj + d;). We can apply a result of Stampacchia [21] which states

that the solution u of

1,0

(L +Nu=fe W oo (@)

du/oN = 0 on 9Q

will be in t°@) if o l>0l-nl (p = isallowed, setting 1/= = 0). By the

(@/2)* def -1

*
Sobolev embedding theorem wé'q cL where a* = a(a - 1) ~. Therefore

Lq/z < w.l'q(ﬂ) and, since q-l - n-l < 0 we have V1 € LQ(Q). Recalling that ak >0

and noting V > 0 we see that V - V1 = V2 where

(L + AV 0
= ()

P
8V2/3N 62 € L™ (3Q)

Another regularity result, due to Murthy and Stampacchia [19] tells us that V_e€ Lu(n)

2
since p > n - 1 (the work of Murthy and Stampacchia deals with a more complicated




it aria )

{
H
{
i
i

e T ———

T

g o

g o

T X

AR

problem namely certain degenerate elliptic problems. Also the theorem we need
[19, p. 61] contains some minor, but confusing, errors. For these reasons we have
included a proof of this result in an appendix). The regularity results which we used
were proven for single component problems. When one includes coupling terms -HU and
-EU on the right hand side of (A) they are no longer a priori in Lq/z(ﬂ) and LP(50)
respectively (unless n < 3). Although we will not take this route, we do note that

one can treat (B), with coupling -HU, by bootstrapping, showing that if U € LD(Q),

p < q/2, then Ue€ L°+E(Q) for some O < € < q/2 - p etc. The proof of the regularity
result for (C) is relatively simple and can be easily extended to the case where we
introduce a coupling term -EU. However to use this approach to deal with the case

where we have both coupling terms present is rather lengthy (unless n < 3). Therefore,
we will use a different approach. Let n -1 <p' <p and n<qg' <gq and r so

=k =1 1

large that r ~ +p ~ < (p') and r_1 Tk (q/2)_1 < (q‘/2)_l. Let (G be the map from

Ll L]
13729y x P’ (30) into H defined by

re 1372

(L + \)G(F,G) in @ ,

'
BG(F,G) = G € ¥ (Q) on 30 .
One easily sees that (G is a closed linear operator and hence continuous by the closed

graph theorem. We claim the map G ° P ° I defined by the diagram below is a compact

continuous linear map from # into itself:

T P v

. ' ' &
Ue B Uy 0 e IX@ x ¥ > wuEm e 13 %@ x 1P en) S ve d
To see this we note that by HOlder's inequality P is bounded linear while [ is

obviously continuous. But J is also compact for if {Un} is bounded there must exist

; 2 2
a subsequence {Un }  such that both Un and YOUn converge in L () and L (39Q).
£ 1 i
k£ Un + U then a fortiori YOUn 19 YOU. It may furthermore be assumed, without loss
i i
of generality that Un + U a.e. in  and YOUn =% YOU a.e. in 9dQ. But we also have
i i

things bounded a.e. and therefore, applying the dominated convergence theorem, we have

Un < U in Lr(Q) and YOUn > YOU in Lr(BQ). We next consider, in /, the equation
i

Usg®r®Iius=s G(Fl.Gl) . (D)

alGe=
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Bubsap G _

H According to the Fredholm theory this equation has a solution in # if

Ker (id. + G °® P ° I) is trivial. But if U_ were in the kernel then one easily

0
sees that (L + A ~ H)U0 = 0 and (B - E)U0 =0 with A > Hee By lemma 5 UO = 0.
! Therefore (D) has a solution U € H which is also a solution of (1)-(3). By uniqueness
we are done. L

Theorem 8. G, :H » H is a continuous map which is monotone in the sense that B, 2P,

a.e., G, <G, a.e. and 91 £6, a.e. implies G,(F

156, 1G1/®)) <G (F,G,.,0)) a.e.

sl

Proof: The monotonicity is of course a direct consequence of linearity and lemma 5.

ol 1 .
Let U, GA(Fi'Gi'e)' i =1,2, then U1 02 € HA(Q) and hence, letting

€ = min(eo,x - uo),

2
6“01' 02”15_ A, (U - U0 ~ U,

By = Bpely = Blg * 18, = CG¥g® = Yo¥alan <
- - + - -
ese. ey~ Fyllg. L lloy = Syl o 31l = 6,
where we used the Sobolev and HGlder inequalities. Hence for fixed ©, G, must be a {

A

closed linear operator. Applying the closed graph theorem we have continuity with
respect to (F,G). To conclude the proof it suffices to show that gx is continuous
with respect to © for F =0 and G = 0. Again this reduces to showing that the

graph {(Q,QA(O,O,G)} is closed. To see this suppose Oi > 0 and gx(o,o,ei) > W

then, extending standard arguments (see e.g. [2]) to the multi-component case (cf. {

equation (4) it can be shown that

0=/ (L+X-HUWda = A (U, ,W - [ (3U,/3N)W ds
Q i A T i

/

where 93/9N : Hl(ﬂ) * H-l 2(39) is a continuous linear map corresponding to

ij i, .m S ; :
(S
{vi(ak Dj + dk)}k.l (Since we will never use continuity with respect to ; e omit

the details). Therefore, for 2\ > uo we have .

: : 2
b o:olluill1 < A (U,0)) = { (3U,/0N)Y @, dS < cst. x ”"1”1”91”1

R e T EO L Rl



We might point out that one can show, using the methods used early in the proof of the

previous theorem, that the graph is closed in the I° topology: “Ui“ < cst. x H9”2 3.
’ ’

Either of these inequalities can be used, in conjunction with the closed graph theorem

or these inequalities may be used together without resorting to the closed graph
theorem.
It will be convenient to introduce the following notation:

Definition. u = max(uo,ul)

i
:
¢
:
i
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3. The Nonlinear Elliptic Problem.

Throughout the rest of the paper we will assume that hypotheses (I)-(IV) are

satisfied. Let us consider

1

+ A - = i
(Lk )uk hkui fk(x,U) in @ (6)
=
Bkuk ekui = gk(x,U) on Ak (7)
u,k = Bk on l"k (8)

Using the more concise notation we define the formal nonlinear operator N by defining
N(u) = Vv if V 1is a genralized solution of
(L+A)V - HV = F(x,U) in Q ,
BV - EV = G(x,U) on A,

v=0 on T .

Then solving (6)-(8) is tantamount to finding a fixed point for N. We shall be inter-
ested in the case where F and G are dominated by affine functions. This is a reason-
able assumption for many practical applications. Forone thing it means that positive
solutions to the associated parabolic equations (i.e. reaction-diffusion equations) grow
no faster than exponentially, thus ensuring existence of a global solution whenever
local solutions exist. In other words we want to assume that there exist a matrix
HF(x) whose entries are all positive and some vector D(x) such that

F(x,U) < HF(x)U + D(x) . (9)
Obviously, due to the presence of H on the left side of our equations we may as well
subtract HFU on both sides, therefore assuming that F, and similarly G, are
bounded from above for all U. As a specific example let us consider the case where
one models the processes of chemical reactor kinetics or of flame propagation (see [4]
for the equations). 1In both these cases one of the components is temperature end the
boundary condition is obtained from heat flux consideration at the boundary. If a
significant amount of heat is lost by radiation one expects a boundary condition of
the form

du 4 4
e g(u) = a + Bu - Yl(u - uo) on dQ (10)

=18«




where u > u

o Yo being the temperature of the exterior region, « > 0, and Yl is a
positive constant obtained as the product of the emissivity of the container's surface
and the Stefan-Boltzmann constant [3], and K is the heat conductivity. If on the

3 i other hand one assumes natural convection at the boundary one obtains [3)

K— = g(u) = -Yz(u - uo)s/4 0 (11)

where Y, >0 and u > u,- In the interval O < u < Uy the remaining physically

3 meaningful range of the temperatures, one might have some other boundary condition which
matches at uo. In any case we notice that in both cases g(u) is dominated by a

linear function for u > 0. For u < 0 we can apparently define g to be whatever

is convenient in order to satisfy mathematical hypotheses. That this causes no problems
follows from a result which we shall prove which says that the existence theorem stated
below is still valid even if the linear domination hypothesis fails in some region,

1 provided some other condition holds. In the above example this condition amounts to
! observing that if we set u = 0 we get

Ju ~
v < glu) .

K

When the corresponding partial differential equation is also nonhomogeneous we must
require a similar inequality there. For example if we are dealing with a one-component
case Lu = f(u), we also require Lu = £(u). Following standard terminology one may
call u a sub-solution, a term which we however have already used. In addition to
domination by an affine map we also must require some reasonable local behavior.
Definition. Let (S,uy) be a measure space and T a function mapping &5 * R, or a
subset thereof, into Rk. Then T 1is said to satisfy the Caratheodory YQPﬁiEiEE 1f
T(x,U) is measurable in x for each fixed U € K" and is continuous in U for almost

all % in 8.

3

Definition. Let S C s x R"  then Fr(S) denotes the class of all functions

m ’ S :
T:S5+R which satisfy the Caratheodory condition and also satisfy:

i) There exists a D€ Lr(s) such that T(x,U) < D(x) for all (x,U) € o




ii) For each real number Vv there exists a T, € Lr(S) such that F(x,U0) > Tv(x)
for all (x,U) € S with U < (v,v,...,V)

A simple example of amap T € Fr(ﬂ x Rm) is one which is continuous, nonincreasing

and bounded from above. Another example is a continuous function which bounded. In

particular if S is bounded and closed and T continuous on S then T € Fr(S) for

for any 0 < r < ®. We introduce another hypothesis which will be needed for almost

all subsequent results.

5 > 0, such that for all (x,0), (x,V)

(F(x,U) - F(x,V))"(U - V) < Yl'U = w]?

(V): There exist numbers Yl 200,

(G(x,0) - G(x,v))-(U - V) < v,|U - v|?

€
Using the notation of lemma 2 (i) and (ii) we define Yy = Yl + YZC (Y—Q)
2
Theorem 9. Suppose (I)-(IV) are satisfied, © € Hl(Q) n Lw(Q), F € Fq_/2 (Q x Rm),

G € Fp(aﬂ x R™) and ) > u. Then (6)-(8) has a generalized solution. If (V) is also
satisfied then this solution is unique for A > uo + v. |5
i
q/2 P } 3
Proof: Let DF € L () and DG € L"(3Q) such that F(x,U) < DF(x) and

G(x,U) < DG(x) for all Ue R". By Theorem 7 we know there exists a number v > 0

such that N\) = (V,v,...,V) > 9)‘ (DF,DG,Q). Let

. .
R={Ue H (]G (F,G.0) <U <N,
where F(x,U) Z.F\,(") € Lq/z(n) and G(x,U) 1G\;(X) € LP(BQ) for all U iNv' Now
! is mapped into itself by N, for if Ue @ then i
N() = G, (F(x,0),G(x,V),0) < G, (D.,D.,O) < N
and

N(u) > G, (F ,G ,0)
o G

[t remains to prove that ¥ is compact continuous (in the Hl(m—topoloqy) because
then the result follows from Schauder's fixed point theorem. Suppose {Ui} is a
sequence inh @ which is bounded with respect to the norm || ”1 in H'(Q). We can,
by Rellich's lemma, find a subsequence {Ui'} which converges in LZ(Q). Also, since

2 i g :
: H1 (Q) - L7 (3Q) is compact continuous, we may assume Ui' converges in

Yo

Yo




!
i
i
]
i

Y P Ao s

B L ]

< wenica

N——

é

[2(3n) (a fortiori to YU where U is the LZ(E) limit of the sequence ?Ui,}).

We have (lemma 2)
* 2 = DR
E.OHIV(Ui,) - I'J(Uj ’“15 A, (W(u,,) ”‘”j-"”‘”i- ‘“”j-”
= [ (F(x,0,,) - F(x,U,,))-(N(U.,) - N(U.,))dx
i J 1 A

Q
+ [ (Gx,uU.,) - Gx,U.)) -y (N(,,6) - N, ))dS
9% 3 § i | 0 i j

By Theorem 7 N(®) is bounded in the norm ||| ||| = || ||l 5.5t I Ilo o, OF

H = Hl(ﬂ) n Lm(ﬂ). Therefore there exists a constant c¢ such that

2
EOHN(Uf) - N, ”1i C{HF(x,Ui,) - F(x,Uj,)” + IIG(x,Ui,) - 6(x,u,,) Il }o2)

0,1,9 0,1.3Q

]
since & is a bounded set in L (Q) the Nemytskii operator F takes @ into

Similarly the image of YO(R) under the Nemytskii operator G is bounded in LP(BQ).

But this means [14, p.22] that these operators,being defined through functions satisfying

the Caratheodory condition, are continuous on & and YO(R) in their respective Ll-
topologies. Hence, by (12), {N(Ui,)} is a Cauchy sequence in HI(Q). We have inci-
dentally shown that (12) also implies continuity. To prove uniqueness we suppose that

N(U) =U and N(V) =V, then using lemma 2 we get
a0||u-v||i + (- uo)llu—vllg AU - V,U =~ V)
=AW - HW,U - V) < Yl”U—Vllg » % eollv-VHf
s v,clegav)llo-vl|2 = 2 e llu-vi|? + yllu- vl

Therefore, if A > u_ + vy then U = V. .

0

Of course the above theorem is also valid if the conditions on F and G are

replaced by -F € Fq 2(9 x Rm) and -G € FP(BQ X Rm). The above result as well as

/
the next theorem generalize similar results obtained in [12] for one-component

equations.

Theorem 10. Suppose (I) - (IV) are satisfied, ©O € Hl(ﬂ) ki Lw(Q), F and G satisfy

the Caratheodury condition on Q x Rm and 90 x Rm respectively, and 2\ > a. Suppose

-21-
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d b ! : L. .
there exist nonincreasing functions ¢ and V¥ from R into itself such that for

>
all k >ky >0

lim sup k¢ (k¥ (s))/s < 1 (13)

s *rm
and for each 1 < i < m we have the growth conditions

fi(X,u o ,...,um),gi(x,u Ju ,...,um) Sl I e R T

i Ui 1, J

fi(x,u ,u ,...,um),gi(x,u ,...,um) > ¢(s) if uj S8 N .

1552 7%

1”2

Then (6)-(8) has a generalized solution. If (V) is also satisfied and A > uo + Y then

the solution is unique.

:
Remark. Simple examples of functions satisfying (13) are Y (s) = -a - b max(0,s) ¢ and
¥
2 K ; <
$(s) = a + b max(0,-s) where a,b,y1 and Y2 are positive constants satisfying
< .
Ty <1
m
¢ = aeols € = ,N_, (@
Proof: Let N, = (1,1, 1) ¢ R and k ||§x<N1 N, lehil, + k, and let

# = (e HH @) [k py) < v <)

where y > 0 1is chosen so large that k1¢(kl(w(y))/y < 1. Then N
maps Ry into itself. To see this we may assume without loss of generality that

$(0) = =p(0) > 1.

N(U) = G, (F(x,0),G(x,0),0) > g}\(W(y)Nl,w(y)Nl,|9|)

> W‘Y)gx‘Nl'N1119|’ > kYN, .
Also
N, < yN..
N <G, (¢ (klw(y))ul,«klwyml,|e|) < ok WIYDK N < yN)
As in the proof of theorem 9 we have all the necessary components to justify the use of

Schauders fixed point theorem. Uniqueness follows from the same argument that was used

in the proof of the previous theorem. L

We conclude this section with a theorem on invariant sets which constitutes the
crucial ingredient in the proof of the invariant set theorem for the reaction-diffusion
equations discussed in the next section. Instead of viewing the result as an invariant

set theorem one might, maybe more appropriately so, regard it is a nonlinear

-22-
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generalizational lemma 5, i.e. as a sort of maximum principle. With this in mind one

would expect to need the following conditions: i) the ith component of F(x,U) + HU
is nondecreasing in uj for each j # i (corresponding to the hypothesis H >0 in
lemma 5) and 1ii) (V) is satisfied (corresponding to the coerciveness requirement of
AA' Also in order to be able to treat nonlinearities of the type occurring in (10) and
(11) we certainly want to allow fi(x,U) to decrease "rapidly" with respect to ui.

This last requirement has tended to make our proof rather lengthy. Before we proceed

we must introduce some more notation.

]
[}

Definitions. (i) F(x,U) = F(x,U) + H(x)U, F (%l,”fz,...,%m)

G(x,U) = G(x,0) + E(IU, & = (§,49,,--.,9,)

m

(ii) We use +=» (resp. =-®) to also denote the extended real valued function
x > +» (resp. x > -®). For convenience we define (L. + A)(+®) = += and B, (+=) = t=.

(i1i) &= (@ 9, ,...,0 ) where v € B @ N1 (@ Nc@® for 1<i<a and
1 o ,
= - i 12 = o n N Q f
¢i for i > d. Vv (wl.wz, 'wm) where wi € H (Q) L (R) c(Q) or

< i< & and wi =+ for i< 8§ or i > L. BAlso we assume the indexing 1is such

that 6 < d + 1. In other words the indices 1 < i < § are those for which ¢i is

A

ik

(A

finite valued and wi is +», the indices ¢ d are those for which both ¢i

A
-
A

and wi are finite valued, the indices d + 1 < i < & are those for which ;i is

-  but wi is finite valued and the indices £ < i < m are those for which both

Wy W and wi = 4o, We also use [$,¥] to denote {U € Hl(ﬂ)l¢ = b= ¥},
(iv) 5= fxu e o x B'ox) < v < ¥e0)
asy - {(x,U) € 3Q x ley d(x) < U < y ¥(x)}
) ! 0 = )
} !
(v) For any Ue€e H (Q), UQ = (wl,wz,...,wd,ud+1,...,um) and

UW = (u That is to say U is obtained from

L ®

lruzr- 6'1’“’6’“’5"’1’“.'wllugﬁ'l“."um).

% by replacing all components which are -« by corresponding components from U and

similarly Uw is obtained from V¥ by replacing components which are *= by corres-

ponding components from U.




e

.,

Theorem 11. Suppose that (I)- (V) are satisfied and A > ; +y, ©Oe€ Hl(ﬂ) (g Lm(w),

b ¢ P -
2(3 Ye G € FP(BS¢) and that fi(x,u ,u ,...,um) and gi(x,u ,u

179 ..,um) are

q/ 1o

nondecreasing in uj for all 1< j < & with j # i. Suppose ¢ :_@ < ¥ and that
for all U€ ([¢,¥]:

(L + )8 < HU, + F(x,0,) and (L + MY > K +F(x,u") in @,

BO < EU, + G(x,U,) and BY > EU’ + G(x,U") on 4 .

(1Q)

Then (6)-(8) has a unigue generalized solution U € [o,Y¥]

We shall postpone the proof until the end of this section. This theorem can be
viewed as an invariant set theorem in the following way. For A sufficiently large
let TA : Lq/z(ﬂ) x LP(BQ) x H > HOC(R) be the operator defined by TA(FO'Go'GO) =V

where V is the unique solution of

(L + X ~ HV - F(x,V)

1}
!
-
=]
QD

~

0
(B - E)V - G(x,V) = Go on A,
vV = @o on I .

The fact that Vv € C(Q2) follows from known regularity results [15, p. 201]. Suppose

I G Fq/z(Q * K, G Fp(aﬂ x R') and that the inequalities (IQ) are satisfied for

all Ue€ [¢,¥]. Then for fixed 90 € [o,Y], and u > 0 the map

W > Tx+u(uw,0,90) leaves [¢,¥] invariant. The proof of this follows immediately

from the inequalities (L + X + n)d < Hqu + F(x,U(p) + W and (L + A+p)¥ > HUW -

F(x,Uw) + uW. It is also easy to prove the following generalization of lemma 5.
Corollary 12. Suppose (I)-(V) are satisfied, A>u+y, Oc¢ HI(Q) N Lm(Q),

Bt F i R): Ge F (39 x R") and that for all 1 <1i < ¢: £ txupou, )

and éi(x,ul.uz,...,u ) are nondecreasing in uj for all j # i. Then TA is an

order preserving map i.e. if

G. >G. and © >© then T, (F_,G ,91) > (FO,G

' 0 )
1= a0 e =0 I =0 At 0

0
To prove this let ¢ = Tk(Fo'Go ,0) and U = TX(Fl'Gl'gl) and apply the theorem.
In Corollary 12 we have a lot of monotonicity available. At the other extreme we

may delete the monotonicity requirement entirely from the statement of Theorem 11

provided we replace (IQ) the requirement that for all U € [d,Y¥)

“Jh=




: Lk¢k + Awk < hiui + fk(x'ul'uz'""uk—l'wk'uk+1'""um) (1 sk sd) ,

g B¢y 5 eiui + gk(x'ul'uz'""uk-l'wk’uk+1""'um) 1<k <ad ,

1 ; Lb + 2y, > hiu1 + fk(x'ul"'"uk-l’wk’uk+1"'"Um) (6 <k <2,
By > eiui + gk(x’ul""'“k-l’wk'uk+1""’“h) (6 < k < &) ,

yielding a result akin to Theorem 8 in [13]. Since we only assume that the inequalities
§ are satisfied for U € [$,Y], instead of for all U € Hl(ﬂ), this result is not just a
; repeated application of the theorem. We will return to this point with a remark at the
end of this section.
The following lemma will be necessary for the proof of Theorem 11.
Lemma 13. Suppose u € Hé(Q) N L@ N Cc(@) and that G = {x € Q|u(x) > 0} and
R = SN 3G. Then the restriction of u to G is a member of H;(G).

Proof: Let

£ E =1{xe Qli/x < lux)| < 2/x) .

E ; s then there must exist a subsequence {k(n)} of positive integers such that
; lim m(Ek(n)) = 0, where m is the usual Lebesque measure on . We define
. nyes
{ £, (x) = max[0,min(1,2 - k) [ux) {1,

—

a function which is a member of Hl(Q) and is equal to O whenever }u(x)} > 2/k(n)

e

and equal to 1 when |u(x)| < 1/k(n). Moreover

-sgn(u(x))k(n)Diu(x) %€ Ek(n)

Diin(x) =
0 LEee Q\Ek(n)

AUD ST " e e

s A
| One casily verifies that D.£ u = uD,§ + £ D,u. We first show that & u > 0 in H (R).
i’n LEry n i n
Let

2/k(n)}

92}
]
A

{x e a||ux)|
then we have

[ wiax < [ € wiee < am@cm?,
Q n 5 n 5=

n

.

P
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f 2505
while
2 2002 2.2
[ (ogg wTax < 2 [ 1Dz 1% + (0w g Nax <
Q Q
2 2 2
2 f k (n) (Diu) wlax + 2 i (Diu) dx <
] B (n) n
: 2 2
8 [ (D, wdx + 2 [ (D u) ax
E
k (n) Sn
We note that since m() < » the last term tends to 2 f (Diu)zdx where S_ = u-l({O}).
S(D
But by the remarks made just before the proof of lemma 4 it follows that this integral
is zero. The next to last term tends to zero because m(Ek(n)) -+ 0. There exists a
function J : (0,») -+ (0,®) such that
2
max f (Diu) dx < € whenever m(o) < J(g)
1l<i<n ¢
Since wu € H;(Q) there exists a sequence {un} (= Hl(ﬂ) such that for each positive |
integer n, there exists an open neighborhood Nn of 3Q\S such that u, vanishes
on Nn. We may assume without loss of generality that there exists a positive number ?
K such that |un(x) - u(x)| <X a.e. for n=1,2,..., and that |u(x) - un(x)lil/k(n)
except on a set on of measure less than J(l/k(n)z). Clearly (1 - gn)un, restricted
to G, 1is a member of Hl(G) which vanishes on a neighborhood of 3G\S. We observe
that
= (=€ Ju =g (4= a ) Ca=~>q)+En,
noon n n n n
where the last two terms tend to zero in HI(Q). Obviously En(u - un) tends to zero
in the L2(Q) topology so that we only need to examine convergence of its derivatives.
2 2 2 2 2
j {Dilgn(u - un)]} dx < é 2(Dign) (u - un) dx + £ ZEn[Di(u - un)] dx <
o X (n) [
2 2.2 2
2(Diu)2dx + 2k (n) | D, u| "K"dx + 2|lu-a |[]
a!
B (n)" (2\ay) B (m™n
2 2 2
| < f 2(0;w%ax + 2K"/k(n) + 2[[u-u [[J >0 as now. .
| E
Q k (n)

D e A e e a  e h
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Remark. 1In the proof of Theorem 11 we will use the following fact. Suppose we alter

E and H by setting certain entries equal to zero. This changes the quadratic

functional AA(U,U) to a new one, A¥(U,U). Let U* = (Iull,!uzl,...,|um(). then
A;(U,U) 2 A:(U*,U*) > AA(U*’U*)
2 o0l 2 2
> egllolld = wgllurli2 = e llull? - w,lloll?
Hence all the results which we have proven are still true, for the same values of A,

for the problem obtained by setting one or more of entries h; and e; equal to zero.

Proof of Theorem 11: We will use u V v to denote the function x = max(u(x),v(x))

and if U = (ul,uz....,um) and V = (vl,v ..,vm) then

24

UVvv= (u Vv,u

v S v ‘ imi i - e 3 de
1 1Y% Vo P vm) We similarly define the greatest lower bounds

uAv and U A V. Next we would like to introduce a notation which can be used to

denote certain matrices obtained from H and E by replacing one or more columns by

Beexly, , (DReel

15

columns of zeros. If M = (mij) is an m X m matrix then the matrix
is the matrix defined by
m,. 4 k< g < x
k,x] ij ~Jzr

= 0 otherwise

Let S > 0 be a member of Hl(Q) gl Lw(Q) which we shall choose later. Next we define

F.: QxR +R" and G. : 3¢ x R® + & by

0 0
F (k,U) = Flx, (UV &) A ¥) + L8-Lpy (v o) a8 +
Bedlyy(w v o aw + S wawn v,
and similarly
G, (X,0) = Glx, (U v &) A ¥) + (L8=llp iy (v o) A8 +
Bedlpywy o a vy + e (waw -
Let ¢* = max |‘¢i”0,M,Q and y* = max llwi“o,m,Q' We note that the first term
1<i<d §<i<y
e Sy & T
appearing on the right hand side of the definition of FO is a member of rq/z(w x R).

The second term is <Hs and, for U < (v,v,...,v), where v is a real number, it is

) ’
Lq/“(9)~ Hence the second term is a

bounded from below by =H(x) (g*,¢%,...,¢%) ¢




member of F
a/

2(9 x Rm). The third term also belongs to Ea/

m
2(” x R') because it

is bounded from above by H(x) (Y*,p*,...,p*) € Lq/Z(Q) and from below by

~H(x) (p*,0*,...,0*) € Lq/z(Q). Finally the last term is < 0 and, for U < (V,V,...,V)

is bounded from below by H((0,0,...,0) A (-v = Y*,=v = Y*, . . .,=-v=1*)). Hence

€ F;(an x R"). Therefore we may apply

1Y)

A

r

m G
€ x SR C
Fo F ,2(9 R) Similarly we have Go
Theorem 9, which says that we have a (generalized) solution UO to the problem
[d+1,m] ;
MDY = =
(L )U0 HUO FO(X.UO) in
[d+1,m] o
BU0 EUO = GO(X,UO) on
='Q
UO on

Let 0 < Fe Lq/Z(Q) be an upper bound for the sum of the first, third and fourth terms

in the definition of Fo. Similarly

the first, third and fourth terms in

0

the definition of GO'

HS

ES

S

(L + \)S ~
BS -~
Applying lemma 5 to
(L + ) (S - UO) -
B(S - Uo) ey

we get S z_UO. But this means that

(L + )\)U0 s

<
B8O, S

Uo =

et 6, =¢, ~u.,. For each 1 < i
i i 0i -

(Li + mi

BY
4

V.

i

F(
G(
)

<

|v

| v

< Ge LP{aq)

is an upper bound for the sum of

Let S be the solution of

=F+ Bedlye 50 0
=Gl [d'd]ES on A
=0 v o on T
[ mlys - vy 20 in 0
ekl e - Uy) 20 on &
§-U, 20 on T
x,(UO V)Y AY) in 9
x,(U0 vV ¢) AY¥) on A
on T
m
o, ve) in o
P
‘ y
v
gi(X,(UO %) ) on Ai
0. on T,
1 1

=




PP

e ——

A g

Let G, = {x|u0k(x) > wk(x)}. We claim that G, = ¢. Suppose this were not the

k k

situation. We can show 6k A 0 is a member of Hz (). To see this we first observe
k

that since u - B, € Hl (2) there exists a sequence 1{v.} * Hl(ﬂ) such that
Ok k Ak J

¢ 1% 5
- ] ¢ = .= eighi £ &
vj ¥ Yok Bk in H (22) and such that vJ 0 on a neighborhocd o Tk But then

[Wk ™ (Vj + ek)] AQ > 6k A O in Hl(ﬂ) as j + =, which implies that

6. A Oe€ Hl (). Applying the lemma & € H (G) where R = A N 3G. Therefore,
k A k Rk k
k
(Lk + A)Gk z-fk(x'uOL \ ¢1,...,u06_1 v ”5-1'wa""'wz'“on+1""'“0m)
= fk(x,uOl v wl A \bl,...,uo2 VoA wl'u0£+1""'u0m) >0 in Gk

B 8 z_&k(x,u V@ yve eraip

ol o6-1 ¥ Pa-1Vere ¥y Yagar e Yoy

- gk(x,uol \% Wl A wl""'uol VA wg'uog+1""'“0m) >0 on Rk

=0 on 3G\Rk '

where we used the monotonicity and the fact that (u,, V wk) A wk =y on G. Actually

Ok k

some care must be taken to verify that the boundary condition on Rk is truly satisfied
for the problem on G. To prove this we first show that if wu € H1 (G) then ue€ H1 (Q)
where we define u simply as

r ni@e) 1f %€ G

u(x) =

0 if x¢ G

In order to do this we may, without loss of generality, assume that u(x) = 0 on a
neighborhood N of BG\Rk. Let v € D(Q), and define vV to be a function in J(Q)
which agrees with v on supp u M supp v and such that supp v C G. This is possible

since supp u M supp v and 3G disjoint compact sets. Now

£G Boivdx - é uoiCdx = - é (Diu)de

Hence, for each i, Dia(x) equals DiU(X) on G and is 0 outside G, i.e.
- 2 & =
Diu € L (R). Moreover u = 0 on a neighborhood of BQ\RR, namely Q\supp u. Now,

(in

i [ is def d satisfi = - A
since X is defined on all of ( and satisfies Bkék Bkwk Bkuok on K’




o P TR

o

the generalized sense via AA) it follows that the

Rk i.e. via the bilinear functional AA

lemma 5, ék >0 on Gk which implies Gk =¢.

inequalities which we know hold for U

00 we obtain

Hence U_ < VY.

boundary condition is satisfied on

defined on Hl(G) X Hl(G). Therefore, by

ol Applying the

(B -+ A)(UO = U0¢) 2 F(x,UO v ¢) - F(X'UO¢) in. @
B(UO - UO¢) Z_G(x,UO v ) - G(X'U0¢) on A,
(U0 - U0¢) >0 on T

Using an argument entirely analogous to the one used to show that UO < ¥, we obtain

from the above inequalities the fact that UO > %, thus concluding the prooi of the
theorem since U0 also solves (6)-(8).
Remark. Suppose one has several pairs (¢(J),W(J)), 1 <3j<r, as in the statement
of Theorem 11, and suppose that
: S : . (3)
@+ e <Fuu 5 ana @+ 0¥ > Fx? in 2,
; . : i (3)
o3 < G(x,U, (5)) and v > Gx,u* ) on s,
and that ¢(]) :_9 E_W(J) for all 1< j <m and all ue€ [9,¥] where ]
% = ¢(1) v 0(2) Vi WV ¢(r) and Y = W(l) A W(z) A W(r). Then there exists a
solution U_ € [¢,¥] to (6)-(8). To see this one merely notes that the first part

0

of the proof of Theorem 11 still shows there exists

+ A = F(x, vV 9) A
(L )U0 F(x (U0 )
BU, = é(x,(uo v ) A
=0
U0

Next we note that

(3)
(Li + A)wk >

“fk(x,((uo v o9) A

and a corresponding inequality on A.

priate inequalities for Gk which

Ok

arguments lead to the conclusion that U_ > ¢.

0

Letting 6k =

show that u L

a solution U0 to
) dn R
Y) on A
on T
(3)
b
Y) )y in R
w(j) - 1 we obtain the appro-
k Ok
wé]). Hence Uy < ¥ and similar

T R YT VY TR
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4., The Nonlinear Parabolic Problem.

We turn our attention to the system

3

Y% P :
T + Lkuk = fk(x,t,U) in QX% (0,T) , (14)
Bkuk = gk(x,U) on Ak x 0,7} ; (15)
uk(X.t) = ek(x) on Fk x (0,T) , (1e)
W (x,0) = u(x) in 2. (17)

We assume that the only explicit time dependence appears in the fk's, although this
can be generalized. For example, if the coefficients of Lk are regular enough, then
we can allow time dependence in the principal coefficients without complicating matters
too much. Time dependent boundary conditions however seem to lead to more serious
difficulties.

In order to obtain our results we shall employ the nonlinear semigroup theory of
Crandall, Liggett, and Pazy (7], [8]. This seems to be appropriate for the investigation
of invariant sets since this type of semigroup "lives" on a closed set which does not
necessarily have to be an entire Banach space. We first briefly describe thc nonlinear
semigroup results which will be used.

Let X be a Banach space and for each t > 0 let A(t) be an operator from
D(t) € X, its domain, into X which satisfies

llx + Mt)x ~ (v + M|l > @ - 2w |[x-yl|
for all x,y € D(t) and all O < A < 1/w, where w is some given positive aumber.
Suppose that the closure, BTET, of the domain is independent of time and
D(t) = D(0) C Range (I + A(t)) for all 0 <t <T,

and all 0 < ) < 1/u. Finally we suppose that J,(t) = (I + M(t)) ! satisfies
”J)‘(t)x - J)‘('t)x” < afue) = weo |Mclx]

for all 0<t, 1<T and xé€ D(t), where u : [0,T] X is a continuous function

of bounded variation and M : [0,») » [0,®) is a non-decreasing function. Undcr these

assumptions




4B 5

n
Uttys)x = TT J (s + i(t - s)/n)x
j=1 (t-s)/n

exists for all x € D(0), 0<s < t<T and

lim U(t,s)x = x ¥x € D(0) .
tis

U(t,s) is called the propagation operator because if y : [0,T) > X is a continuous,

strongly differentiable map satisfying

dy - =
b + A(v)y 0 y(s) Y, € D(0)

then vy(t) = U(t,s)yo [8, Theorem 3.1).

Our aim will be to find an invariant set which is equal to D(0) for an appropriate
nonlinear semigroup. This means that we must find D(t) such that (15) is satisfied.
This makes it necessary to exactly determine the domain of the operator L. The diffi-
culty in this lies in the interpretation of the boundary condition (2). Since

ij

ak € Lw(Q) and Diuk € LZ(Q) their traces on 030 are not well defined. However

we can circumvent this problem as follows. Define B to be the unique linear operator

B: v s (Ue Y@ Lo - we 22t » & t/?

()
which satisfies

AO(U,V) - (LU - HU,V) = (BU,YOV)an

for all Ve Hl(ﬂ). The existence of B is easily established via the Riesz represen-
tation theorem [2], and one can also check to see that if U and the coefficients of

L,H,B, and E are sufficiently well behaved then é

= ij i i
= + # =
Mty = i "D ¥ TQT o v uy
where the right hand side can be evaluated pointwise. Since Hl(Q) is a Hilbert space

there exists an orthogonal projection operator LI Hl(Q) > Hl(n) with

/

nAHI(Q) = H;(ﬂ). Suppose a € Hl 2(am. Let Ue ygl(a) and define

~ 1 1
Ly Gl YoﬂAU € HA/z(BQ) = YOHz(Q) CH /2(39). This is a well defined map since if
1 1
U = ' th - g (= =gy = - u') = 0. :
Yo YoU' then U - U'e HO(Q) HA(Q) so that YO"A(U u') YO(U U') = 0. Hence
we have a projection operator iA satisfying ﬁAYO = YoTp We also have the correspond-

M2

ing adjoints ™} : #@ > #t@  and o o) » 8200,
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Lemma 14. Suppose F € Lz(ﬂ), G € H-l/Z(BQ) and © € Hl(Q), then U is a

generalized solution of (1)-(3) iff.
(a) (L +X)U=-HU=F (as distributions)
(b) TA[BU - G) =0
() m(U - @l =U-©
Proof: If U 1is a generalized solution then
1
AX(U,V) = (F,V) + (G,v)aQ YV € HA(Q)
In particular
AA(U,V) = (LU + AU - HU,V) = (F,V)
for all V€ CQ(Q) with compact support in &, and therefore (a) is satisfied. By
the definition of B
AA(U,V) = (LU + AU - HU,V) + (BU,YOV)aQ = (F,V) + (G,YOV)aQ
for all V€ Hi(ﬂ), and hence
=~ 1
= (
(BU'YO"AV)aQ (G,YOTTAV) YV e H (Q)
so that
*rk [BY = = *v* [BY - =
YOWA{BU G} WAYOIBU G} 0

Since is surjective, hence Ya injective, (b) follows. Because U - O ¢ Hz(Q),

Yo
m,(U=-0©) =U - 6. conversely suppose (a), (b), (c) are satisfied. Obviously
U-©c¢ Hz(Q). Using the definition of B together with (a), (b) and the fact that
D(R) is dense in Lz(Q) yields

1
AA(U,V) = (F,V) + (G,YOV)ag LA HA(Q) . L

Returning to the problem (14)-(17) we see that the above lemma implies that
A(t) : U > LU - F(x,t,0)
is a well defined operator from

U - 06,F(x,t,U) e A v

e i @lwe z2@, 1w -0

o}

%Zréu - 3G(x,U)1

/

into L2(9) where j : Lp(aﬂ) C H-l 2(89). The closure of this set will, if the

-33=
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coefficients of L and B are "nice", be all of Lz(Q). In order to obtain invariant

sets of the type described in the introduction we will instead define the domain by
n b 2 ~ s ~ ~ 2
D= ue H (|10 e L @) ,m, (U-©) =U-0,1[BU - jG(x,U)] =0,F(x,t,U0) € L7(2),® < U <Y

The following hypothesis will also be needed.
(VI): (i) There exists a constant K > 0 such that
|F(x,t,0) - Fix,1,0)] < k|ul|t - 1]

A v
We also assume F satisfies (V) with vy independent of t, and F € F2(S$).

il

(ii) There exists a collection DOO C (D(Q))m such that DOO is a dense subset

(with respect to the L2(Q)-topology) of

D {u e Hl(Q)|LU - HU € LZ(Q),WAU = U,T*BU = 0}

0

Condition (i) is more restrictive than needed. Condition (ii) is a technical necessity
which can be replaced by additional regularity requirements on the coefficients. For
7 ij 5 e m
example, if a, and dk are of class C (2) then we can set DOO = (DAY LE
these coefficients are sectionally Cl with discontinuities across surfaces in @
whose union T has a closure whose n-dimensional measure is zero then Do0 can be
taken to be the collection of all Cm(Q) functions with compact support in QT
Please recall that ﬁ(x,t,U) = H(x,t)U + F(x,t,U) and é(x,U) = E(x)U + G(x,U).
o
Lemma 15. Suppose (I)-(VI) are satisfied, © e Hl(Q) N L (), and for each fixed
5 = ¥ :
te [0,T), with T < ©», we have F € F (bw) and. G€ E (95 iPor 1 i< % we
q/2 ¢ pe @ e
suppose %i(x,t,ul,uz,...,um) and éi(x,ul,uz,...,um) are nondecreasing in uj for
all j #4i, 1 <3J <. Finally suppose that ¢ < ©® < ¥ and that for all Ue€ [9,¥]

L® < F(x,t,U,) and L > F(x,t,00) in 9 x [0,T)

A

B® &x,u") on A x [0,T)

{A

>

é(x,U¢) and BY
Then A(t) satisfies:
(i) [| (U + M©U) = (V + MM (V) ”03 (L = Mu)HU-VHO
for all U,ve D and all 0 < X < w—l, where w is some fixed positive number.
(ii) The Lz(n) -closure of D is D = (Ue Lz(ﬂ)l¢ < U < ¥}, a set we will

denote by [%,¥].
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(1ii) Range (I + AA(t)) D [9,¥]

(iv) If W(t) + M(DIW(E) = F € [(%,9] (i.e. W(t) = 3, ()F ) then

llwee)y - weeplly< ele, - el dlell, + 1

1

for all tl'tz € [0,T), where C 1is a constant.

Proof: (i) |lu - V||0||U + M(t)U -V - M(t)v||oi
(U-v,Uu-V) + AAO(U - V,0 - V) - A(F(x,t,U) -~ F(x,t,V),U - V)

- AME(,U) = GO, V),U = V)0 » 11 - Aty + ym@)flo-v]?,

where we used (VI), lemma 2, and the definition of Y.

(ii) Let U be the generalized solution of

(L+ MU =F(x,t,0) in @, (>7q) ,
BU = G(x,U) on & ,
u=90 on T .

Suppose W 1is any element in DOo such that ¢ < U+ W< ¥. Since W= 0 on som

neighborhood of 932 we have
(@) (L+X=HA{U+W = Flx,t,0) + (L+2-DWe L2@,Fx,t,u0 + W e L2@) ,
(b} %Z[ﬁ(u + W) - jé(x,yo<u + W) =
mopu Lk i
'nA[BU JG(x.YOU)J 0,
(c) nA(U+W-(-))=w+uA(u-(-))=w+U-(-).
Hence D D {U + W|W e DOO,O < U + W< V¥}, which upon taking closure with re: pect to
the LZ(Q) topology yields
Bo(u+wwe 22,0 <u + W< ¥ = (5,7

(1ii) Let F_€ [¢,¥] and consider

0
Ly+w=Fxt,o) +1F in 0
A L [ A O r
BU = G(x,U) on 4,
U=9 onn T .

By Theorem 11 we have a generalized solution U € [¢,¥] if 1 = (0 + y)A > O.

=35=




(iv) Let W, + M(t,)W, =F, (i =1,2). Then
1 30 s

g 2 2
G llwy +wyllg + e gllwy ~wll] < a) o) - w0 - w)

1A

(F(x'tllwl) - F(x'tzlwl)rwl w ) + (F(xlt lwl) L2 F(x:t lw2)lw1 = w2)

L)

2 2

(F. = FP_,W, = W)

* (b(xlwl) = G(X:WZ).W1 =W, * 1 AN >

2°A

>

A

y i ! i 2 = 12 4
ctle, = gyl llw Il lwy -wllg +llwy - wlig+llw, - wllg , o}

-

i |
Lite, - myllllwy - wyll, -

Using lemma 2 we see that there exists a constant C'(co) such that the above inequality

implies
3
] 1 p ' 1
Fong= € (co))(lwl—wzllo + eofzﬂwl-wzlll =@ [tl-tzl Hw1H0+ T”F1'F2”n (18)
First we let t_, = t_, some fixed value in (0,T), and W, =W the solution corres-

2 0 2 o’

ponding to the case where F2 = 0. We then obtain

1 ' 0 i ! |
e c'(eonllwlll & tx=u - ele i u l mernfw |, + = F, I

or

(- Atu, +c' oD lw ll + e ]l
I < R oo pm R
1 - Aoluo +.€ (eo) + C'T)

where Ao is chosen so small that the denominator is larger than %, Hence we have
a1l < 2llwgll + 2lle, I

Returning to inequality (18) and selling F, = F_ = F obtain, for 0 < X < *0,

1 2
_ i i = ¥ | I Hells
= W +
”J)‘(tl)l’ Jx(tz)l’-‘” ||wl w2(|5_4xc ty t2|{H oll + il
‘ : This concludes the proof of the lemma which guarantees the existence of a propacation
operator for a nonlinear semigroup on [(%,¥Y] generated by A. -

pefinitions. U : (0,T) - LZ(Q) is called a stfong solution of (14)~(17) if
(a) U is continuous on [0,T) and U(0) = Uo.
| (b) U is absolutely continuous on compact subsets of (0,T).

(c) U is differentiable almost everywhere on (0,T) and is a generalized

4
E 4 solution of (14)-(16) (regarded as an elliptic problem) for almost all t € (°,T).
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A subset S C LZ(Q) is called an invariant set for (14-(16) if U(t) ¢ 7 for all
t € (s,T) whenever U 1is a strong solution of (14)-(17) with U(s) € 7.
Theorem 16. Suppose the hypotheses of lemma 15 are satisfied (ercept T = = 1is allowed).
Then there exists a propagation operator U(t,s) defined on (9,9 corresponding to
problem (14)-(16). In particular [577] is an invariant set for this problem. Moreover,
if the graph of A(t) is closed then U(t,O)U0 is a strong solution for each U0 e B,
Proof. The existence of U(t,s) follows from the lemma. By “heorem 3.1 in [8] any
strong solution U of (14)-(17) with U(s) € [577] must satisfy U(t) = U(t,s)UO, t>s,
and hence [STV] is an invariant set. The last assertion of the theorem follows from
Theorem 3.4 in [8]. .

As in the elliptic case there are various possible corollaries we could state.
One such result was stated in the introduction. We shall state two more.
Corollary 17. Suppose (I)-(VI) are satisfied, © € Hl(Q) NL°(Q), ¢ and Y are
members of Hl(ﬂ) nc@ N Lm(ﬂ), F and G are continuous on & X Rm+l and Q x Rm

respectively and for each 1 < k <m %k(x,t,u t Uz eeepd.) and §k(x,u ,u

1% g7 Gy re s i)

m
are nondecreasing on uj for j # k. Suppose ¢ < © = Viland

Ld < F(x,t,¢) and LY > F(x,t,¥) in Q x [0,T)

B¢ < G(x,4) and BY > G(x,¥) on A x [0,T)
Then [¢,¥Y] 1is an invariant set and U(t,O)U0 is a strong solution whenever
0 -
U e DC [¢¥).

Proof: We only have to establish that A(t) 1is closed. Suppose Un ¢ D and Un = 8

in LZ(Q) and A(t)Un Fn » F in Lz(Q). Using (18) one easily sees that this means

o > U in Hl(n) and hence YOUn - yOU in L2(BQ). But since F and G satisfy
i ; " i -a/2(Q)

the Caratheodory condition for each t this means F(x,t,Un) + Plx;t,8) in L

while G(X.Un) + G(x,U) in Lp(BQ). To see this we use the fact that the Up's are

uniformly bounded and a standard continuity result for Nemytskii oocrators [14, p. 22].

Using (18) once again we see that JA(t)' and hence A(t), is closed. L]

We also have the following result for the case where we have no monozonicity

requirement on the coupling

-
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e i1 2 — .
F
-
] Corollary 18. Suppose (I)-(VI) are satisfied, © ¢ H](,) ) IW(J) and for each fixed
F ] «\; > Y .
t€ [0,T) we have F € F (S5,) and G€ F (35) where ¢ < ) < ¥. Then [9,¥] is

q/2 ¢ p ®

an invariant set provided that for all U € [$,¥] we have

Lee S B lxouu,u @ uaeen) Q<k<d),

Bif s §k(x,u1,u2,...,uk_l,¢k,uk+l,...,um) (L <k <d) , |
- Ly > %k(x'ul'UZ""'uk-l'wk'uk+1""'um) (6 <k<2), ;
- B Yy 3‘ék(x'ul'UE"'"uk-l'wk'uk+1""'um) 6. £ 'k < BY . ;

These inequalities are essentially requirements that the "velocity" on the "faces"
fUIuk = Wk} and {Ufuk = wk} are in the right direction. If one has monotonicity this

"velocity" only needs to be checked at the "edges" {Ului i 0 A R ) d} and
{Ului =V, 8 < i< 2} (the statement of the theorem) while in the extreme case of

totally monotonic coupling (Corollary 17) we only need to check the "velocities" at

the "vertices" ¢ and V.

Proof: By the remark at the end of the section on elliptic systems we see that it

Q suffices for the inequalities to hold for all U € [$,¥Y]. Hence part (iii) of lemma 15
is still true. The other parts of lemma 15 are obviously also still true since the

relevant hypotheses are those which this lemma and Theorem 11 have in common. Therefore i i

the proof of Theorem 16 again applies here. L]
In conclusion we mention that these results can be generalized to problems involving

even more general, but still time independent, boundary conditions on Lipschitz con-

tinuous boundaries. We can also allow time dependence in the elliptic operators Lk

provided the coefficients are sufficiently regular. This is done by applying the full

power of the semigroup results in [8]. FC

A 7
!
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APPENDIX

Theorem. Suppose that u € HI(Q) and that for all v in Hl(Q)

a, (u,v) = f fa*'(b,u) (D,v) + d*uD,v + b vD.u + (c + Auvldx = ] gui's .
X 2 2 % it 20

where we assume that (I)-(III) are satisfied. (Since we are dealing with the one

component case, m = 1, the subscript k is deleted), that X > E and g € LP(BQ).
@

Then ue€e L (Q).

Lemma. ([19, p. 24]). Let ¢ = Z(t) be a nonnegative, nonincreasing function on the

half line t > 0 such that there are positive constants C, o and £ such that

th) <cth -0 %m1® for h>k>o0.

Then, if B8 > 1, there exists a constant d > O such that ¢(d) = 0

(B-l)/uzB(B-l)

(e.g. a=c%z(0)] ).

Proof of the Theorem: Let v = (sgn u)max(|ul - k,0) = (u=-Xk) VO+ (u+k) AOE€ Hl(ﬂ).

We have, letting E(k) = {x € &||u(x)| > k}:

a, v = ([ + Il ) (a*p u + diu)D,v+'(biDiu-+(c + Mu)v)dx
E(k) Q\E(k) 2 =
=/ (@'v+ div)Div-bvbiDiv + (c + Vv)ax
E (k)
+ k f (diD.v +cv+ Avidx - k [ (diDiV + cv + Av)ox
{u(x)>k} < {u(x)<-k}
=a,(v,v) +k I (diDi|v| + c|v| + A|v])ax
E(k)

a (v,v) +k [ @, |v] + c|v| + Alv]rax
A Q i

a (v,v) +k [ (c + A~ D_di)lvl +k [ v,di,vlds
4§ Q y e *

Hence aA(u,v) = aA(v,v). Also there exists a constant K > 0 such that

I[v”f_i Ka, (v,v) < Ka, (u,v) =K [ gvads
1Y)

If we set F(k) = E(k) M 3Q then

[ gvas=[ gvasclqll v vll < c.llgll O e
3 F (k) 0,r,F(k) 0 0,p,F(k) 0 0,r,F(k) 1
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where p = 2(n - 1)/(n ~2) and r = 2(n - 1)/n. We note that p > r, hence another
application of Holders inequality yields

1/r-1/p
”g'lo,r,F(k)i”guo,p,F(k)m(F(k)) .

Using the Sobolev inequality ['YOVHO 5 agj_collvnl and the fact that v =0 on
’ ’
IN\F (k) we have

2 1/r-1/p
Mvolo. o, a0 < ¥ollallg, p, am B 0D

Hence if h > k then

mE®NYP 0 -1 < llvgvlly | pgo < ch”"”n,p,ag m(F (k) /TP

Letting ¢ (h) = m(F(h)) we have, for h > k > 0

2 -p (1/r - 1/p)p
cm) < kegllally | ag)" = 10200 st

An application of the lemma concludes the proof.
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u + L
t 18]
BU

F(U) in Q ’
G(U) on 230 ,

where L = (Ll,Lz,...,Lm) (Li a linear second order elliptic operator)

and B (Bl,B2,...,Bm) (Bi a linear boundary operator of a general type) : I8
and U = (ul,uz,...,um). The main result essentially says that S = {U|¢ SHUSs ¥}
is an invariant set if

Ld < F(9) and LY > F(¥) in Q

and

B® < G(¢) and BY > G(Y¥) on 30 .

- S

The work also includes some existence results for the parabolic problem and the

associated nonlinear elliptic problem.
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